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APPENDIX D

BASIC ENGINEERING CALQULATIONS

D-1 INTRODUCTION

This appendix consists of summaries of general areas of engineering that support topics presented in the main text or have general applic:
to field engineering practice. Many of the equations and functions discussed can be performed by preprogrammed hand-held calculator:
microcomputer-based software.

D-2 MATHEMATICS

The following paragraphs review some basic algebra, trigonometry, analytical geometry, and calculus operations. See Appendix.&. of the
Navy Ship Salvage Manual, Volumg30300-A6-MAN-010) or Chapter 8 of thgalvor's HandbooKS0300-A7-HBK-010) for mensuration
of plane shapes and solid bodies.

D-2.1 Quadratic Equations. Given a quadratic equaticaé + bx + ¢ = 0, the following relationships exist for the rootsandx,:

Cc

-b £ yb* -4 b
M, xl+x2:—5, andxl(xz):E

Xp X% = >a

D-2.2 Cubic Equations. Cubic and higher order equations occur infrequently in most engineering problems, but usually are difficult to factor
when they do occur. Trial and error solutions can define the general region in which a root occurs, but are generally too time consuming 1
precise determination of roots. Graphical means can approximate roots with fair accuracy.
Numerical analysis techniques yield extremely accurate solutions. The more efficient numerical analysis techniques are too complicatec
present here. However, the bisection method described below is simple and usually can provide solutions with sufficient accuracy with or
a few iterations. To use the method, values of the independent variable above and below a root, ddsjgmat&)j, must be determined.
The function has a value of zero at a root, st f@nd fR,) have opposite signs. Let be the iteration number. Far= 0, 1, 2, ... the
following steps are iterated until sufficient accuracy is attained:

a. Setm=1/2 ,+R).

b. Calculate fit).

c. If f(L)f(m <0, setL,,, =L,andR,,; =m; if f(L)f(m) >0, setL,,, = mandR,,; = R.

f(xX) has at least one root in the interval (, R..,), with an estimated value of:

(Lo * Ri)

x
!
N~

The maximum error i¥2(R.., - L,,;). The bisection method does not automatically find other roots that may exist on the real number line.
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EXAMPLE D-1

Find the roots of f(x) = X* - 2x- 7

The first step is to find L, and R,. The approximate vicinity of the root can
be determined by calculating f(x) for arbitrary values of x, as shown below:

X -2 -1 0 +1 +2 +3
f(x) -11 -6 -7 -8 -3 +14

f(x) changes sign between x = 2 and x = 3, so a root exists in the interval
(2, 3);setL,=2and R,=3

Iteration O:
m= ?1 (2+3) = 255

f(2.5) = (2.5 - 2(2.5) - 7 = 3.625

f(2.5) is positive, so a root exists in the interval (2, 2.5); set L, =2 and R,
= 2.5. At this point, the best estimate of the root is the value m that would
be used for the next iteration:

m, = ?1(2+2.5) =225

The maximum error is 1/2(2.5 - 2) = 0.25.

Iteration 1.
f(m,) = f(2.25) = -0.1094

f(m) is negative so a root exists in the interval (2.25, 2.5); set L, = 2.25 and
R, = 2.5. The best estimate of the root is:

X = 2i(2.25+2.5) = 2.375

The maximum error is 1/2(2.5 - 2.25) = 0.125. The procedure continues
until the maximum error is acceptable.

D-2.3 Trigonometry. Trigonometry provides angular relationships that can be used to determine length of sides and size of included angles
in triangles and polygons, and to resolve vectors into rectilinear components.

D-2.3.1 Angular Measure

360 degrees = one complete circle \ Radians

90 degrees = right angle % radians

_180

one radian =—— = 57.3 degrees
T

one degree =T = 0.0175 radians
180

D-2.3.2 Right Triangles. For the right triangle shown in Figure D-1, sidés the hypotenuse,
sidex is adjacent to, and sideopposite of, angl®. The Pythagorean Theorem states #iat

+y?*=h? and forms the basis for the definitions of the trigonometric functions sine (sin), cogine h
(cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (csc) shown below: y
sinezlzi cos@zfzitanSzZanezi 0
h csAO h sed X cosh cotd X
cscd = E _ .l sed = E _ 1 cot = X 1 _ CF)SG Figure D-1. Right Triangle.
y sin@ X cosh y tan® sin@

Figure D-2 shows the relationship of the trigonometric functions to the unit circle. The fufic-

tions of the related angles are given in Table D-1. Table D-2 of & Navy Ship Salvage S
Manual, Volume 1S0300-A6-MAN-010) gives trigonometric functions for angles from 0 tp &
90 degrees. ”
0,1) cotan 8
[«2)
cos© E
Table D-1. Functions of Related Angles.
&%
Numerically equal function of theta for the indicated angle Qc? -
- (2
Function -9 90-8 90 + 0 180 -6 180 + 6 $ £
8
sin -sin® cos6 cos6 sin® -sin® I (1,0
cos coso sin@ -sin@ -cos@ -cos@
tan -tan@ cotd -coto -tan@ tan® Figure D-2. Unit Circle.
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D-2.3.3 Trigonometric ldentities

Sirf® + cos® = 1 cof® + 1 = cséb tarf® + 1 = seéd
o . (O [P
sin2® = 2(sind)(cost) cos®D = co$ - siF = 1 - 2sirfo sinb. = 2%'”%30%%

= tan6 cod
_
smEBE = % |i(l - cosB) tand = sinb sed cos® = cotf sind
E2e \2
se® = csod tand cotd = cosd csch cscb = sed cotd

D-2.3.4 Two-angle Formulae. For the two acute angles of a right triangle:

6+ = 90

sin® + ¢) = [sinB][cosy] + [cosB][sing]
sin@® - @) = [sinB][cosy] - [cosB][sing]
cosP + @) = [coP][cosy)] - [sinB][sing]

cosP - @ = [coP][cosy| + [sinB][sing]

D-2.3.5 General Triangles. For any triangle, as shown in Figure D-3, the following law
apply: B
SinA sinB _ sinC

Law of Sines: =
a b c A C

Law of Cosines: a2 = b? + c? - 2bc(cosh)

Figure D-3. General Triangle.

Area: %ab(sinC)

D-2.3.6 Hyperbolic Functions. Hyperbolic functions are specific equations that include the teghasmide™. These combinations @& and
€* appear regularly in certain types of problems. In order to simplify the equations in which they appear, hyperbolic functions are give
trigonometric names and symbols:

. X - X X 4 @X X _ X .
sinhx = & — & costk = &°te tanhx = & - € _ sinhx
2 2 eX+ex  cosh

2 1 2 1 X 4+ @x
cschxk = ___ = = __ sechx = = cothx = & e’ _ cgshx
e*-e sinhx eX+ex coshx eX - e* sinhx

The hyperbolic identities differ somewhat from the standard trigonometric identities. Several of the most common identities are shown hel

cosltx - sinttx = 1 1 - cotix = cschix 1 - tanifx = secHhx
coshx + sinhx = e~ coshx - sinhx = e*
coshk +y) = (coshx)(coshy) + (sinhx)(sinhy) sinhk +y) = (sinhx)(coshy) + (coshx)(sinhy)
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D-2.4 Straight-line Analytic Geometry. For the straight line shown in Figure D-4, the following equations can be written:

General Form: ax+ by +¢ = 0 0 v9)
Slope Form: y = mx + b Y v
i . -y ) = - (0,b)
Point-slope Form: ¢ ¥,) = /.n(x x”.) . o ) 4
where (x , y_)isany point on the line
Intercept Form: Y o= 4 Vs
a b 'b*"‘b
Two-point Form: YooY R X
X - X x -ox, (a,0)
Polar Form: rsin¢ = d,
Normal Form:  x(cosd) + y(sing) = d, Figure D-4. Straight Line.

The distance d between a point and a line is:

fax, + by, + c|

Ya? + b?

The distance between two points on a rectangular coordinate system is:

d =

d = 0 - %)+ 0, -9
For parallel lines:

al b]
— = __, m, = m,
a, b,
For perpendicular lines:
aa, = bb m, = - .
12 = 172 * | -
m2
Point of intersection of two lines:
o = b,c, - bc, Vo= a,c, - a,c,
1 7 ’ 1=
azbl B albz azbl N albz
Smaller angle between two intersecting lines:
a,b, - a,b, m, -~ m
tan¢ = = R ¢ = |arctanm, - arctanm,|
aa, + bb, 1 +mm,

D-2.5 Differential Calculus. Derivatives can be used to locate local maxima, minima, and points of inflection. No distinction is made between

local and global extrema. The end points of the interval always should be checked against the local extrema located by derivatives. The
following rules define the extreme points:

f/{x) = 0 at any extrema
f"{x) = 0 at an inflection point
J'(x) <0 at a maximum

S'(x) >0 at a minimum

With a few special exceptions (i.c., some trigonometric functions), there is always an inflection point between a maximum and a minimum.
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D-2.6 Integral Calculus. The Fundamental Theorem of Calculus is:
[Fre = fa) - o)

D-2.6.1 Integration by Parts. If fand g are functions, then:
[rdg = fo - [gar

D-2.6.2 Indefinite Integrals. The following list includes some of the more common indefinite integrals. u and v are functions of the variable
x: ais a constant. The constant terms ("...+ C") have been omitted from the solved integrals.

fdx = x fcosx dx = sinx
J' . -1
fadx = ax (sinax)dx= S cosax
fau dx = afudx J-sinx dx = -cosx
1
Iudv: uv - .[vdu _[(cosax)dx: ~cosax
f(u+v)d,x = fu dx+fvdx ftanxdx = In|secx| = -ln|cosx|
= 1 = ! :
fdyff(x,y)dx _ fdxff(x,y)dy ~J‘(tamax)dx = .‘_z_logsecax = -a_logcosax
m x(m+1)
fx dx = e m# -1 fcotxdx = Injsinx] = -Injcscx]|
J-E = In|x| f(cotax)dx = ilogsinax = —ilogcscax
x a a
fe‘dx = e* fsecxdx = In|secx + tanx]|
Je“‘dx = le‘“ f(secax) = _I_log(secax+tanax) = ilogtan r +_2£
a a a 4 2
fxe’“dx = Feux (ax - 1) fcscxdx = In|cscx + cotx]|
f dx = arctanx J‘(cscax)dx = __l_log(cscax- cotax)= _l_logtanﬂ
1+ x2 a a 2
f dx = arcsinx fcoshxdx = sinhx
\//1 - x?
fsinhxdx = coshx
dx
= arcsecx
/
xyx? -1

D-5
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D-2.6.3 Integral Tables. It is not uncommon that an integral to be evaluated is not found in the integral table in use, especially with an
abbreviated table like the one above. When this occurs, there are three basic alternatives:

® Seek a more extensive integral table, such as those containeddRt&tandard Mathematical Tabl&urrington’s Math Tables
Mark’s Standard Handbook for Mechanical Engineecs various calculus texts, such as Thom@&sliculus and Analytical
Geometry

® Apply numerical or approximate methods (see Paragraph 1-4).

* Attempt to transform the integral into a form that can be evaluated. Some brief guidance on transforming integrals follows. For
a more complete discussion, consult a standard calculus text, such as Ti@atadus and Analytical Geometry

Expressions to be integrated, iotegrands are transformed by four basic methods:

* Trigonometric Substitutions If an integrand containg(a® - x?), substituteasinu for x. V(a® - x?) then becomescod..
Similarly, substituteataru for x, andasea for V(x* + a2), or asea for x, andataru for V(x? -~ a2)

* Completing the Square RewriteaxX’ + bx + ¢ asa[x + b/2a)? + (4ac - b*/4a and substitutes = x + b/2a andB = (4ac -b%)/4a.

® Partial Fractions— For a ratio of polynomials, where the denominator has been factored into linear fgétdmnd quadratic
factorsq(x), and the degree of the numeratéx) is less than that of the denominator, rewrige)/[p;(X) . . . p,(X)h(X) . . . G(X)]
asA/pi(X) +. .+ A/P(X) + (B + CP/oy(X) + ... + BX + Cla(X).

* Integration by Parts- Change the integral using the formyla dv=uv - [ v du whereu anddv are chosen so thatis easy to
find from dv, andv duis easier to find tham dv.

D-2.6.4 Uses of Integrals.The principal uses of integration are for determining areas and volumes of shapes bounded by continuous curves.
The area bounded by = a, x = b, f,(X) above, and fx) below is given by:

Area = { 15,00 - £,09]dx

The area of the surface created by rotating a funcifghabout theX-axis is:
Surface area = 12{ "f)y1 + [F'(9)2  dx

The volume of a function rotated about tKeaxis is:

Volume = T[J. b(f(x))zdx

The volume of a function rotated about theaxis is:

Volume = 21{ bxf(x)dx

The length of a curve described byxf is:

Length = Lb\/l + IR dx

D-6



S0300-A8-HBK-010

D-2.7 Miscellaneouws Constants

\’/E = 1.141421 T = 3.14159 e = 2.71828

3= 1 1

V2 = 1.25992 — = 0.31830 — = 0.36787
Tt e

In2 = 0.69314 ™ = 9.86960 e? = 7.38905

v,@ = 1.73205 InTt = 1.14472 |Og)e = 0.43429

'3 - 141220 log,m = 0.49714 In10 = 2.30258

In3 = 1.09861

D-3 SOLID MECHANICS

Mechanis is the brand of sciene tha deak with forces ard motion Statics deab with the action of forces on bodies at rest while dynamics
deak with forces on bodies in motion.

D-3.1 Units of Mass and Force. Units of mas and force are often confused particulary in the English gravitation (foot-pound-second)
systen of units Mass is a measue of physicad quantity, the mas of an objed is independehof gravity or othe acceleration Foree is related
to mas by Newton’s seconl law of motion:

_ d _ dv dm
F = —_mv = m__ +v__
dt dt dt

where m is the mas and v the velocity of the body in question ard d/dt indicates rate of chang (derivative with respet to time) of the
designatd property Massisconstatfor mog situations so dm/d is zerg and chang of velocity with respetto time is acceleratia (a) giving
Newton’s secom law in its familiar form:

F = ma

In the English system the pourd is commony usel both as a unit of force (poundforce, Ibf) ard as a unit of mas (poundmasslbm). If these
units are substitutel into Newton's secom law, with acceleratia in feet per secom per secorl (ft/se), the units do nat balance:

Ibf = (Ibm)(ft/sed)

This discrepang is resolvel by multiplying the equation by a constan with appropria¢ units:

gft O Ibf -sed
Ibf = (lbm xC__ "~
(b E 0™ © omr

One pourd force is defined as the force exertel by a standad gravitation# field on one pourd mass Standad acceleratia due to gravity, g,,
is taken as 32.17% ft/sed. Substitutiny thes values ard units into the force equatim and solving for C:

11bf = (11bm)(32.173 ft/sed) x C Ibf-seé/lbm-ft

1 Ibf
32.17% Ibm-ft/seé

O C Ibf-se&lbm-ft =

D-7
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The force equation can now be written:

whereg, is the gravitational acceleration constant, numerically equal to the standard acceleration due to gravity (32.174), with units of Ibm-ft/Ibf-
seé. Theslugis defined as the mass that will be accelerated at 1 ftisga force of 1 Ibf. A slug is therefore equal to 32.174 lbm. If mass
is expressed in slugs; is 1 slug-ft/Ibf-seé

In the International System of Units (SI), the unit of force is the newton (N), defined as the force required to accelerate a mass of kilogram at
one meter per second per second. Substitution into the force equation shows that with mass expressed in kjlograrkg;m/N-se& A

metric gravitational system, with force units of kilografesee (kgf), is sometimes used, although it is gradually being displaced by the more
correct Sinewton Again, substitution of units into the force equation shows that to obtain forces in kilogramsdproast have a value of

9.80655 kg-m/kgf-seéc

The constang, is always present in the force equation, and consequently in many equat
derived from it. Deletion ofg, or confusion ofg, with the acceleration of gravitygf are

common errors in applying these equations. Depending on the units used, these error
have no practical consequence. The engineer should understand the funagjoim dfie

relationships in use, and its numerical value relative to the desired units, to avoid sefious

calculation errors.

D-3.2 Statics. Forcestend to change the state of rest or motion of a body. A force |

completely specified by its magnitude, direction, and point of application. The semde
as applied to a force refers to one of the two directions along the line of action of the fo
Forces are represented graphically by vectors with direction parallel to the forces lin
action and lengths proportional to the magnitude of the force. A drawing showing the li
of action of forces acting on a body or structure isgace diagram A sketch showing
vectors representing the forces isector diagram In the following discussions, forces are
indicated on space diagrams by two lowercase letters next to their lines of act]
corresponding force vectors in the vector diagram are identified by the same uppercase |
marking the endpoints. The sequence of letters identifying a vector indicates the sense

ons

may

on,
biterS

nf th

vector; vectorBA is equal to, but with opposite sense of vec&B. A number of forces
taken collectively is a system or set of forces. Force systems are classifieglasar, with

o
pr—tc

Figure D-5. Resultants of Coplanar
Concurrent Forces.

the lines of action of all forces lying in the same planenorcoplanar. Force systems are

further classified agoncurrent nonconcurrentor parallel, depending on whether all the
forces intersect at a single point, intersect at several points, or have parallel lines of ag
Two or more forces that are equivalent to a single forcecaraponent®f the single force.

Composition of forcess the replacing of a system of forces with a simpler system.

Resolution of forcess the replacing of a single force by a system of forces, usually wi
lines of action parallel to coordinate system axes. Témultantof a force system is the

simplest equivalent system. For concurrent, coplanar forces, the resultant is a single f
For nonconcurrent or parallel coplanar forces, the resultant may be either a force or a co|
For noncoplanar forces, the resultant may be two or more forces that are not parallel arj
not intersect.

D-3.2.1 Coplanar Concurrent Forces. Two concurrent forces? and Q, acting through
point O on a body, are represented by the adjacent sif#andOA of parallelogramOACB,
as shown in Figure D-5. The resultant is represented by the diagghalSince sideBC is
equal to sideDA, the force system can also be represented by trigD@€ as shown. The

length of OC is determined by the law of sines or cosines, or the Pythagorean theorem if

OBCis a right triangle.

A force can be resolved into an infinite number of pairs of components by construct
different triangles, as shown in Figure D-6. The most common task is to resolve the fq
into rectangular components, parallel to the axes of the chosen coordinate system.
unresolved force vector forms the hypotenuse of a right triangle, with the component fo

tion.

forming the adjacent and opposite legs as shown. Given amgk = Pcosx and P, =

Figure D-6. Resolution of Forces.

Psina for the force triangle shown in Figure D-6.

D-8
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ron

The resultant of multiple concurrent forces can be found graphically by constructing a fg
polygon, as shown in Figure D-7. The resultant can be determined algebraically by resol
each force intox andy rectangular components, with components acting upwards or to
right as positive, and those acting downwards or to the left as negative. x Eml y
components are summed separately, and the results recombined to form the resultant
force system.

D-3.2.2 Noncoplanar Concurrent Forces. The resultant of three rectangular noncoplang
concurrent forceP, Q, andSis determined by constructing a parallelopiped, as shown in Figl
D-8. The resultant is represented by the diag@akith magnitudeV(P> + Q% + $°). Its
direction cosines with respect to the axes are given by:

S
cosy = —
& R

P Q
cosa = —, cos ==,

R $ R
The resultant of any number of noncoplanar, nonrectangular concurrent forces can be deter|
if the forces are specified with reference to three rectangular axes passing through the pg
currency. Each force is resolved intpy, andz components that are summed and recombing

into the resultant. If the component summations are desigdigd F,, and>F,, then:

Ving
he

of the

mined
int of
bl

FORCE POLYGON

0 20 40 601b

Figure D-7. Force Polygon.

R = [EFf + (SR + (OF,7
>F SF, SF,
(px = arccos—_—_ (p = arccos_-= (pZ = arccos__-
R y R R

D-3.2.3 Moments and Couples. The moment or torque of a force about a point is the
product of the force magnitude and the moment arm (the distance separating the force
of action and the point). When working with moments, it is important to adopt and maint|
a consistent sign convention.

Generally, moments tending to produce counter-clockwise rotation are taken as positiy
The moment of a force about a particular axis is determined by resolving the force

components parallel with and perpendicular to the axis. The parallel component prod
no moment. The sum of the moments of any coplanar force system about any point or

nto

Lice
axis

in their plane is equal to the moment of the resultant about the same point or axis.

Two equal and parallel forces of opposite sense forrowple The arm of the couple is the distance between the lines of action. The moment

of a couple is equal to the product of the magnitude of one of the forces and the arm of the couple; the moment is constant and indepenc
of the origin of the moments. Couples of equal moments, in the same or parallel planes, are equivalent, and may replace one another—a co
may be rotated or moved in its own plane, or transferred to any parallel plane, without altering the resulting motion of the body on which
acts. A couple may be represented by a vector length equal to the magnitude of the couple’s moment. The vector is drawn perpendicula
the plane of the couple. The positive sense of the vector is the direction in which a right-hand screw would advance. The resultant of copla
couples, or couples in parallel planes, is a couple with moment and sense equal to the algebraic sum of the component couples. The rest
of any number of couples in oblique or parallel planes is also a couple. The resultant is determined by resolving each couple vector ir

%igure D-8. Resultant of Noncoplanar

Force System.

components parallel to a set of rectangular axes. Xtye andz components are summed 2€,, 2C,, andZC,; the magnitude and direction

angles of the resultant couple vectorare given by:

JEC,f + (XCf + (XC,f

X - y
arccosT (py = arccosT (pZ =

>C

arccos__~
C

D-9



S0300-A8-HBK-010

D-3.2.4 Coplanar Nonconcurrent Forces.The resultant of a system of coplanar nonconcurrent forces may be either a single force or a couple.
Resultants are found graphically by use dtimicular diagram, a special type of vector diagram drawn next to the space diagram. For example,
to find the resultant of the four parallel forces shown in Figure D-9:

a. Plot vectoB to show the sense and magnitude of foateparallel to the line | 00 50 b 150 1b

of action at a convenient location. Then plot, in succession, the veB@rs
CD, andDE to show the sense and magnitude of forbescd, andde The . ’
vectors plot on the same line, in either an upward or downward direction,|as 0 T
dictated by the sense of the vector forc&E, runningfrom the beginning to aje
the end of the vector diagram, shows the magnitude and sense of the resultant T ; o
in this case, 180 pounds, downward. ‘ai*K”é

b. To determine the line of actiome of vector AE, plot the poleO in any con- T =

venient position and draw the raye), BO, CO, DO, andEO as shown. T 3 7
120 b

c. From any point on the line of acticeb (in the space diagram), draw strings| SPACE DIAGRAM
ao andob parallel toAO and OB. LY

d. From the intersection afb and bc, draw oc parallel toOC until it intersects
cd; from the intersection, drawd parallel toOD to intersectde, then drawoe
parallel toOE to intersecbaatK. The line of actiorae passes through, 5.3
feet to the right ofab.

To solve the problem algebraically, a sign convention is adopted (upward forces positive,

downward forces negative) and the magnitude and sense of the resultant is given by the sum -7 -~
-~~~ VECTOR

of the forces R = ZF). The line of action of the resultant is determined by summing " DIAGRAM
moments. All moment arms are measured from the same point, selected to simplify E”
calculations, and the sum of the moments divided by the resultant force gives the resyltant 0 25 50 75 100 Ib

moment arm, locating the line of action of the resultant, wheselltant arm= ZM/R.

Figure D-9. Funicular Diagram.

If the summation of forces is zero, but the sum of moments is not zero, the resultant|is a
couple.

D-3.2.5 Noncoplanar Nonconcurrent Forces.The resultant of a system of noncoplanar parallel forces may be either a single force or a couple.

A set of three rectangular axes is established, withzdagis parallel to the lines of action of the forces. The intersection of the lines of action

of the forces with thex-y plane is indicated by, y coordinates. Moment arms about theand Y axes are readily determined from the
coordinates for each force. As with coplanar force systems, the magnitude and sense of the resultant are given by the summation of forces
(R = ZF). The coordinates of the line of action of the resultant are found by dividing the sums of the moments aboahthéaxes by the

resultant:

« = M, E(Fx) XM X(Fy)
R YF Ve R YF

If 2F = 0, butzM, # 0 or ZM, # 0, the resultant is a couple in a plane parallel to Zhaxis. The moment of the couple, and its orientation
with the x-z plane, is determined by omitting one of the forces from the force and moment summations, as shown in the following example.

D-10
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EXAMPLE D-3
The lines of action of the four forces shown in the vector diagram in Figure D-10 are perpendicular
to the plane of the paper. Positive and negative senses are as shown. Summing forces and Y 251b
moments: (1,2 (2,2)
-/ B
201b e
Force x M y M, e
bs f flh & b 35 1b
N2 1)
+20 -1 -20 +2 +40 -
{'\? C// +X
+40 -1 -40 -1 -40 = o
-3 +1 -35 +1 -35 Y ////(-1,-1)
Ve
-25 +2 -50 +2 -50 //%’// 7
‘A 401b o
Sums 0 - 145 - 85 &/
’ V4
ZF=0, and =M,, M, # O; the resultant is a couple. If the last forpe is omitted, R, = +25 Ib, =M,
=-95 ft-Ib, and M, = -35 ft-lb. The coordinates of the line of action of R, are: Figure D-10. Noncoplaner, Nonconcurrent
Forces.
XM, - M, -
x, = v = 25 - 3gf, oy = 2= 35 - g4
R +25 R +25

The arm of the couple is the distance AB, from the resultant force to the most distant opposite force. AB is determined to be 6.72 feet from triangle ABC.
The moment of the resultant couple is 25(6.72) = 168 ft-lb. The angle BAC is the angle between the plane of the couple and x-z plane. Angle BAC = arctan
3.4/5.8 = 30.38 degrees. The sense of the couple is seen to be counter-clockwise when viewed from the positive end of the Y-axis.

The resultant of a system of noncoplanar, nonconcurrent, jon-

parallel forces is generally a single force and a couple not

CO-

Table D-2. Conditions of Equilibrium.

planar with the force. The magnitude, sense, and angular di-
rection of the force is the same as if the forces were concurrent
System Algebraic Conditions Graphical
2 2 2 Conditions
R= \/(EFx) + (ZFV) + (ZFz) Coplanar
Colinear 3F=0. Force polygon

Q = arccosTX Q= arccosTy @, = arccosTZ

R acts through the selected reference origin. The couplé
determined by summing moments about the coordinate sys
axes. The moment sums represent three couples which are
components of the resultant couple.Z¥, is taken as a vecto
along theX-axis, =M, as a vector along th¥-axis, andzM, a-
long theZ-axis, then the moment of the resultant couple and
direction angles of its vector are given by:

b is
tem
axial

Parallel

the

Concurrent at point O

3F, =0, ZF, = 0, if the angle between x and y is not
180 degrees; or

2F,=0, ZM, = 0, if the x direction is not
perpendicular to Oa; or

M, =0, =M, = 0, if aOb is not a straight line.
5F=0,ZM=0;or

M, =0, ZM, = 0, if line ab is not parallel to the
forces.

2F,=0,2F,=0,ZM=0; or

closes.

Force polygon
closes.

Force polygon
closes, funicular
polygon closes
(first and last
strings coincide).

- 2 2 2 2F,=0,2ZM,=0, ZM, = 0, if x is not perpendicular to Force and
c \/(ZMx) + (ZMV) + (EMz) Ec?r?cpc?r:gﬂ?rlént aab; or ’ funicular polygons
close.
M M M M, =0, M, =0, M, = 0, if abc is not a straight
0, = arccosTX 0, = arccosTy 0, = arccosTZ line.

R andC can be compounded into two nonintersecting force

D-3.3 Conditions of Equilibrium. A body is in equilibrium
with respect to some reference system if it does not move
respect to the referencstéticequilibrium), or moves with con-
stant velocity dynamicequilibrium). For an object to be in
equilibrium, the resultant of all external forces and mome

AitRRallel

Nonparallel,

rﬂ(gmoncurrent

Bconcurrent at point O

Noncoplanar

2F,=0,2F, =0, 2F,=0; or
ZF, in every direction and ZM, about every axis = 0.
2F,=0, ZM, =0, M, = 0, forces parallel to Z-axis.

3IF,=0,2F,=0,3F,=0,2M,=0, 2M,= 0, ZM, = 0.
M about every axis = 0.

Force polygon
closes. Polygon
is warped, so
both plan and
elevation views
must close.

Not used.

The projection of
the system on
any plane is in
equilibrium.

must be zero.

Depending on the kind of force system involved, different tests or conditions are apppiea/&that the system is in equilibrium. In most cases,
a body is determined to be in equilibrium by inspection, and the applicable conditions of equilibrium are used to develop relationships that c
be solved for unknown forces, moments, distances, or angles. Conditions of equilibrium for various force systems are shown in Table D-2.
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If three forces are in equilibrium, they must be coplanar, and either concurrent or parallel. If concurrent, each force is proportional to the sine
of the angle between the other two forces. If parallel, each force is proportional to the distance between the other two.

If a force system is in equilibrium, the resultant of any part must balance the resultant of the other part. This fact is the basis for the construction
of free-body diagrams A free-body diagram shows an object in equilibrium, with all external forces, moments, and support reactions. With
the object in equilibrium, the resultant of all forces and moments on the free body is zero. If any part of the object is removed and replaced
by the forces and moments exerted by the "cut" surface, a free-body diagram of the remaining structure is obtained, and the conditions of
equilibrium are satisfied by the new free body. By dividing an object into a sufficient number of free bodies, internal forces and moments can
be determined at all points of interest, provided the conditions of equilibrium are sufficient to give a static solution.

D-3.4 Centroids and Centers of Gravity. The centroidof a system of parallel forces with fixed application points is the point through which

their resultant always passes, no matter how the lines of action of the forces may be rotated, so long as they remain parallel. For plane surfaces,
the centroid corresponds to the center of area, so long as the forces are not affected by geometry; for volumes the centroid is the center of
volume. Determination of centers of areas and volumes by numerical integration is discussed in Paragraph 1-4. Relationships for locating the

centroids of various plane shapes are given in Appendix C obtlse Navy Ship Salvage Manual, VolumeSD300-A6-MAN-010.

The force of gravity acting on individual particles of a body constitutes a system of very nearly parallel forces; the centroid of these forces is
the center of gravityof the body. Calculation of center of gravity is discussed in Paragraph 1-3.7.

D-3.5 Moment of Inertia. Moment of inertia is a measure of the resistance of a solid or plane area to rotation about axes in the plane of the
area considered, and is always positive. The moment of inertia of a solid body, sometimes caihedshmoment of inertid,,) with respect

to a given axis is the sum of the products of the masses of each elemental mass of which the body is composed and the square of the distance
of each element from the axis. dimis an elemental mass, andts distance from a reference axis, the moment of inertia of the body about

the axis isl,, = [ y* dm 1 is measured in units of mass and length squared, such as %lugidiment of inertia can also be expressed as

= k’m, wherem is the mass of the body ardis the radius of gyration or radius of inertia. The radius of gyration is the distance from the axis

to a point at which the mass of the body could be concentrated without changing the moment of lnertimeasured in units of length, and

lies between the greatest and lowest valueg. off a body is composed of a number of parts, its moment of inertia about an axis is equal to

the sum of the moments of inertia of the individual parts about the same axis.

The moment of inertial{ of a plane surface with respect to a given axis is the sum of the products of the incremental areas of which the surface
is composed and the square of the distance of the incremental areas from the akésis Hn incremental area, andits distance from a
reference axis, the moment of inertia of the surface about the akis fs? dA = kA, whereA is the total area, anklis the radius of gyration.

The quantity[ y* dA is more properly referred to as tlsecond moment of argas it has units of length to the fourth power and is not truly

a measure oinertia. For homogeneous solids of uniform thickness, the mass moment of inertia is equal to the moment of inertia of the face
of the solid, multiplied by the mass per unit volume and thickness of the solid. Moments of inertia for structural shapes are tabulated in
Appendix E. Calculation of moment of inertia for ship sections is discussed in Paragraph 1-11. Relationships for moments of inertia of various
plane shapes are given in Appendix C of th&S. Navy Ship Salvage Manual, VoluméSD300-A6-MAN-010).

D-3.5.1 Parallel Axis Theorem. The moment of inertia of an area or mass is equal to the moment of inertia about a parallel axis through the
center of gravity, plus the product of the area or mass, and the square of the distance between the two axes:

o = 1, +Ad?, loan = o + mMd?
where:
Ian = moment of inertia (second moment) of area about some/Ais
Iy = moment of inertia (second moment) of area about an axis paralkehtihrough the center of area (centroid)
A = total area
d = perpendicular distance from the center of area or gravity to Afis

lnan= moment of inertia of mass about some akl
| = moment of inertia of mass about an axis paralleA#dthrough the center of gravity (not necessarily the center of volume)

m,o
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D-3.5.2 Polar Moment of Inertia. The polar moment of inertia is taken about an axis perpendicular to the plane of the area and is a measur
of the area’s resistance to twisting in its own plane of the area. The polar moment of ihedial)is equal to the sum of the moments of
inertia about any two mutually perpendicular axes in the plane of the area that pass through the center of area:

D-3.5.3 Product of Inertia. The product of inertial(,), sometimes called theross moment

of inertia, is equal toff xy dy dx wherex andy are the coordinates of incremental aregs.

may be positive or negative, depending on the location of the area with respect to thg( //\
o

reference axeXX andYY. K/ Xo

. N . a b
If 14y ois the product of inertia of ared about the mutually perpendicular ax¥gxX,, Y,Y, v
through the center of area as shown in Figure D-13, and AXe¥Y are parallel toX X, ©
. X X
Y,Y,, then: Y
Figure D-11. Product of Inertia and
Iy = 1 + abA Parallel Axes.

wherel, is the product of inertia of are& about axes<X andYY anda andb are shown in Figure D-11.

D-3.5.4 Moments of Inertia About Inclined Axes. If I, andl, are moments of inertia about a set of mutually perpendicular ¥XesndYY,
andX'X', YY" are a set of mutually perpendicular axes inclined at some d@hgleXX andYY, then:

ly = 1,co$6 + | sirf6 + | sin2

Iy = 1,c0S6 + | siFe + | sin2

-1 .
I, = *X_Ysin® + 1 _cos®
2 Il

moment of inertia about axi¥'Y'
moment of inertia about axix'X'
product of inertia about axes X', Y'Y

T
Ly

D-3.5.5 Principal Moments of Inertia. For any plane area, there is a set of mutually perpendicular axes such that the moment of inertia is
maximum about one axis and minimum about the other. These axes gmértipal axes of inertiaand the corresponding moments of inertia

are theprincipal moments of inertia The product of inertia about the principal axes of inertia is zero. Axes of symmetry are always principal
axes of inertia.
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D-4 PHYSICAL AND MECHANICA L PROPERTIES OF MATTER

D-4.1 Density. Densily (p) isthe mas of a unit volume Typicd units are slugs per cubic foot, kilograms per cubic meter grans per cubic
centimeter and pounds-masper cubic foot. Many fluid flow calculatiors are basel on densiyy measurd in pounds-masper cubic foot.

Weight density or specift weight is given by:
Py
9

y:

In astandad gravitationa field (g = 32.17% ft/sed), weight densiy in pounds-fore and mas densiy in pounds-masare numericaly equal.

Densiy of a liquid or solid is usually given obtainel from atable or easily determiné by weighing asampé of known volume The density
of a gas can be found from a modification of the ided gas law:

- b
Pos = RT
where:

Pgs = gas density Ibm/ft®

p = pressurelbf/ft?
R = specifc gas constantft-Ibf/lbom-°R
T = absolue temperature’R

Tables E-19 and E-20 give densities of comma solids ard liquids. More extensie tables can be found in gener& engineerig and technical
handbook (see Bibliography).

D-4.11 Specific Volume. Specift volurre (8) is the volume occupieal by a unit mas or weight ard is the reciprocé of density:

D-4.12 Specific Gravity. Specife gravity (y,), sometime called relative density is the ratio of a fluid’s densiy to a specified reference
density For liquids and solids the normd referene is the density of pure water There is sonme confusia abou this referene since the density
of wate varies with temperatureand variows referene temperature have been usal (e.g, 39, 60, 70 degres Fahrenheitetc.).

Strictly speaking specific gravity cannad be given without specifyirg the referene temperatue at which the water’s densiy was evaluated.
However the referene temperatue is often omitted since water's densiy is fairly constahover the normd ambiert temperatue range To three
significart digits, the referene densiy is 624 lbm/ft®, and:

Yo T w22
Speciftc gravities of petroleum product and aqueos acid solutiors are routinely expresse in "degree$ correspondig to hydromete readings.

The principd hydromete scak in currert use is the APl (American Petroleun Institute) scale althoudh the Baumé scak was useal widely in
the past API gravities are convertel to specific gravity (ratio) by:

v = 1415
9 1315 + °API
Baumé hydromete reading are convert@ to specific gravity by:
Yy, = & for liquids less den® than water
g 1300 + °Baumé
Y, = & for liquids dense than water

145.0 - °Baumé

Appendk B of the U.S Naw Ship Salvag Manual, Volune 5, (S0300-A6-MAN-050 includes tables convertirg API gravities to specifc gravity
ard densiy and temperatue correctiors for observe API gravities.
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The referene densiy for the specific gravity, or vapa density of a gas is normally the densiy of air at specified conditiors of pressue and
temperature The mod commony usel referene is air at standad temperatue ard pressue (STP) i.e. 70 degres Fahrenhdiand atmospheric
pressure The densiy of air at STP is approximate} 0.07 lbm/ft®, and:

p

Yoo = G078

If the gas and air densities are evaluaté at the sane temperatue and pressurethe specifc gravity is the inver ratio of specific gas constants:

v = R, _ 533
gas a B
Rgas Rgas

D-4.2 Viscosity. The viscosiy of a fluid is ameasue of its resistane to flow. Viscosity is illustrated by a modé consistirg of two plates
that are separaté by a viscous fluid layer with thicknes (y). The bottam plate is fixed; the top plate is kept in motion at a constan velocity
(v) by a constanforce (F).

Experimeng with Newtonian fluids hawe shown tha the force requiral to maintan the velocity is proportion to the velocity ard inversely
proportion& to the separatia of the plates Tha is,

Fpopw
A dy
The constan of proportionality designatd by the symbd L, is known as the absoluge or
dynamc viscosity. Noting that the quantiyy F/A is the fluid shea stress: Table D-3. Viscosit y Units .
T = uﬂ
dy System of Absolute Kinematic
. Viscosity Viscosity
Kinematt viscosity is defined as: Units M v
) Ibf-sec/ft?
v = ”sc English slug/ft-sec ft’/sec
Metric - CGS dyne-sec/cm? cm?/sec
Viscosity is measurd in avariety of units Table D-3 lists the mog commony usal units (poise) (stoke)
in the English and Sl systems. _ Pascal-sec ,
Metric - SI N-sec/m? m‘/sec

Conversios betwea the two types of viscosities and betweea the English and various metric
systens are given in Table D-4.

Kinematt viscosiy is measurd indirectly by a viscometer,
Table D-4. Viscosit y Conversions. acontaine which allows the fluid to lesk out throudh asmall
orifice of preci® dimensions The more viscous the fluid, the
more time will be required to leak out a given quantity.
To Obtain Multiply By and Divid e by Viscosity measurd in this manne has the units of seconds.
fsec Ibf-sec/fi2 32174 density The standad viscosimetes in the United States are the
sec stokes 1076 x 10° 1 Saybot Unlvers_a viscosimete fo_r ordlne_uy I_|qU|ds, ard_the
_ Saybot Furd viscosimete for viscows liquids. The time
Ibf-sec/ft’ f/sec density 822 required for a gravity flow of 60 cubic centimetes through
Ibf-sec/ft’ poise 1 478.8 the orifice is called Saybot Second Universa (SSU or
m?/s centistokes 1x10° 1 Saybolt Seconds Furol (SSF). Saybolt Universal
m?/s stokes 1x10° 1 viscosimetes are calibratel so that the viscosiy of pure water
m2ls /sec 9.29 x 107 1 is 30 SSU Approximae conversim of SSJ and SS- to
pascal-sec centipoise 1x10° 1 stokes may be mace by:
pascal-sec Ibm/ft-sec 1.488 1
pascal-sec Ibf-sec/ft? 47.88 1 stokes = 0.002BSSU - 1_95 (32 < S < 100)
pascal-sec poise 1 1 SSuU
pascal-sec slug/ft-sec 47.88 1 = 0.002DSSU - 1_35 (SU > 100)
poise Ibf-sec/ft? 478.8 1 SSuU
poise stokes specific gravity 1
reyns Ibf-sec/it ! 144 stoks = 0.022SsF - 184 (25 < SF < 40)
stokes ft’/sec 929 1 SSF
stokes poise 1 specific gravity 0.60
= - >
0.0216SSF SSE (S > 40)
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In liquids, molecular cohesion is the dominating cause of viscosity. As the temperature of a liquid increases, these cohesive forces decrease
and absolute viscosity decreases.

In gases, the dominating cause of viscosity is random collisions between gas molecules. This molecular agitation increases with temperature,
causing the viscosity of gases to also increase with temperature.

The absolute viscosity of both gases and liquids is independent of pressure. Kinematic viscosity depends on both temperature and pressure
because these variables affect density.

D-4.3 Vapor Pressure. Molecular activity in a liquid tends to free some surface molecules that enter the atmosphere as vapor. This tendency
toward vaporization increases with temperatukéapor pressureas the partial pressure exerted at the surface by the free molecules. Boiling
occurs when liquid vapor pressure exceeds the local ambient pressure.

D-4.4 Surface Tension. The skin which seems to form on the fred
surface of a fluid is due to the intermolecular cohesive and adhesjve Table D-5. Typical Surface Tensions (68 °F, Air Contact).
forces known as surface tension. Surface tension is the amount of work

required to form a new unit of surface area. The units are ft-fdift Fluid T
Ibf/ft.
Ethyl alcohol .001527 Ibffft
Surface tension can be measured as the tension between two points on Turpentine .001857
the surface separated by a foot. It decreases as temperature increases Water 004985
and depends on the gas contacting the free surface. Surface tension '
values usually are quoted for air contact. Typical values are given|in ~ Mercury 03562
Table D-5. N-octane .00144
. . . . Acetone .00192
The relationship between surface tension and the pressure in a bubble
surrounded by gas is given by: Benzene .00192
Carbon tetrachloride .00180

_ 1
T - zr(pinside_ poutsid(-_)

wherer is the radius of the bubble. The surface tension in a full spherical droplet or in a bubble in a liquid is given by:

_ 1
T - Er(pinside_ poutsid(-_)

Surface tension is the causeaapillarity, which occurs whenever a liquid comes into contact with a vertical solid surface. In water, adhesive
forces dominate. They cause water to attach itself readily to a vertical surface and climb the wall. In a thin-bore tube, water will rise above
the general level as it tries to wet the interior surface.

D-4.5 Compressibility. Compressibility is the percentage change in a unit volume per unit change in pressure:

AV

Vv

c=___
Ap

Liquids are usually considered incompressible, but all fluids are somewhat compressible. The bulk modulus is the reciprocal of the
compressibility:

e=21
C

The bulk modulus of an ideal gas is given by:
E =kp

wherep is absolute pressure atkds the ratio of specific heats is 1.4 for air.
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D-5 FLUID MECHANICS

Fluids are generaly divided into two categories ided ard real. lded fluids hawe zero viscosiyy and shearig forces are incompressibleand
hawe uniform velocity distributiors when flowing.

Red fluids are divided into Newtonian and non-Newtonia fluids. Both Newtonian ard non-Newtonia fluids hawe finite viscosities and
nonunifom velocity distributiors when flowing. Viscosities of Newtonian fluids are independenof the rate of chang of shea stresswhile
viscosities of non-Newtonia fluids vary with the rate of chang of shea stress Newtonian fluids are typified by gasesthin liquids, and most
fluids having simple chemicd formulas Non-Newtonia fluids are typified by gels emulsions and suspensions.

Most fluid problens assune Newtonian fluid characteristics.

D-5.1 Fluid Statics Pressureare measurd as standad or absolute Absolue pressure are measurd from areferene datun of zem absolute
pressurgthere are no negatie pressures Gage pressurs are measurd from standad atmosphen pressue (approximate) 14.7 psia) Negative
gage pressurs (belov atmosphed pressurgare called vacuum Maximum vacuum is therefoe -14.7 psig.

D-5.11 Manometers Manometes measue pressue differentials Figure D-12 shows a
simple U-tube manometewhose ends are connectd to two pressue vessels If one end is

open to the atmosphergthe manometemeasursthe difference betwea pressue at the other P

erd and atmosphed pressuregi.e., gage pressure Since the pressue at point B is the same

as at point C, the heigh (h) of the fluid colummn is relatal to the pressue differentid (Ap): Alol—3—

Ap = p-p. = Yoh

wher vy, is the weight density of the manometer fluid. This relationship assumes that| the
manometeis smal ard tha only low-densiy gase fil | the tubes abowe the measurig fluid.
If a high-densiy fluid (such as wate)) is presemn abowe the measurig fluid, or if the gas
columrs h, or h, are very long, a correctim is required:

Ap = y.h +yih - yh,

. . . . . . . Figur e D-12. Simple Manomete .
wher y, is the densiy of the fluid abowe the high erd of the measurig fluid and v, is the

densiy of the fluid abowe the low end of the manometefluid; h, and h, are the heighs of
the fluid columrs abowe the measurig fluid, as shown in Figure D-13. Correctiors for
capillarity are seldan neededsince manometetubes generaly are large enoudy to preclude
capillary action. P,

D-5.12 Hydrostatic Pressure From Incompressible Fluids. Hydrostatc pressue is the
pressue which afluid exers on an objed or containe walls. Itsline of action is normd to
the expose surface regardles of the object’s orientation or shape It varies linearly with
deph ard is a function of deph ard densiy only. Pressue acting on an incrementaarea
creats an incrementh pressue force the resultat of all the incrementh forces or net
hydrostatc force, is afunction of pressue and area distribution and act throuch the center
of pressure.

. . , Fi D-13. M ith Flui
Pressue on a horizontd surfa@ uniform ard constitutes a systen of parallé forces the 'gure D-13 osgfﬂeetgshmtg Fﬁ;g_s

cente of pressue is the centrod of the plane surface The gage pressue ard totd vertical
force are given by:

p = ¥h, F = pA
where:
p = hydrostait pressurglb/ft?
y = fluid (weighd density Ib/ft®
h = deph of fluid of the surface ft
F = hydrostatt force, Ibf
A = areof the plare surface ft?
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For arectangulaplate immersel in afluid body, eithe vertically or inclined at sone angle
0, as shown in Figure D-14, pressue varies linearly with depth The pressureat the top and
bottam of the plate are:

p, = v
p. = yh, = yssind

ys,Sin

S,sin®

where subscrips 1 and 2 denoe the top ard bottom of the plate respectivelyard s is the
distane from the intersectim of the liquid surfa@ and the extensim of the plate surfae to
the point in question measurd paralld to the plate surface The avera@ pressue occus at
the averag deph (1/2)(h, + h,) sin 6 ard is equd to:

pavg = %y(hl + h2) = %y(sl + SZ)Sine Figur e D-14. Immerse d Rectangula r Plate.

The totd resultan force on the inclined plare is the produd of the averag pressue and totd area F = p,,/A. The cente of pressue is not
located at the averag@ deph but at the deph of the cente of the triangula or trapezoidapressue distribution:

ad
_ 2 SlsZD
ST oAHtS T ——
3%1 SH’%E
hy = s:sin6

For a nonrectangulaplare surface the avera@ pressue depend on the location of the centrod of the surfa@ (s.):

P, = YSsinb, F = p,A

avg

The line of action of the resultan (hydrostatt force) is normd to the plare surface at deph hg:

I
s, = s + ACS, h, = s.sinB

where |, is the momer of inertia abou an axis paralld to the surfa@ through the areas centroid.

D-5.13 Hydrostatic Pressure From Compressibk Fluids. The expressia p =y hisaspeci& cas of the more generbh FundamentiaEquation
of Fluid Statics:

2dp _ B
LF = -(h, - h)

As previousy defined h is deph within the fluid, and it is assumd tha h, is greate than h,. The minus sign indicates that pressue decreases
when heiglt increases If the fluid is a compressitd layer of perfed¢ gas and if compressio is assumd to be isothermal the Equatio of Fluid
Statics becomes:

h

2 1

0
-h, = RTI
"B

The pressue at height h, in alayer of isothermaly compresse gas is:

o, = ple]

EXAMPLE D-4

The pressure at sea level is 14.7 psia. Assume 70 °F isothermal compression, and calculate the pressure at 5,000 feet altitude.
R = 53.3 ft-Ibf/lbm - °R for air. T = (70 + 460) = 530°R.

0 - 5000

Psooore = 14.7(\9 TR = 12.32 psia
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D-5.14 Fluid Masses Under Acceleration. The equatiors presentd to this point hawe as-
sumael that the fluid is subjecte only to gravitationd acceleration When afluid is subjected

to otha accelerationsadditiona forces which change hydrostatt pressuresare imposed. \

If the fluid is subjectd to constam acceleratiosin the verticd and/a horizonta directions,

)
fluid behavia is given by: ay wcp

d
+3 6 = arctal &
g +49

whete a, is the verticd acceleratia (negatie if the acceleratia is downward ard a, the hori-
zontd acceleration 8 is the angk betwea the liquid surfa@ and the horizonta) as shown in Fi .

- L . . . igur e D-15. Fluid Mass Under Constant
Figure D-15. A plare of equa pressue also is inclined in a fluid mas unde horizontal Linear Acceleration.
acceleration.

(el )

o o o

P, = ¥h

| o

—

ay

D-5.2 Head. Pressueis measurd in units of force per unit area (pound per squae inch, pounds per squae foot, newtors per squae meter,
etc.) Pressueisconverte to the new variabk heal by dividing by the fluid density Since densiy itself possessedimensionaunits the units
of heal are not the sane as the units of pressure:

_ (p,Ibf/ft?) _ p, Ibfift?
(y, Ibf/ft3) plbm/fté

(h, ft)

Aslong asthe fluid densiy ard locd gravitationd acceleratia reman constantthere is complee numericé interchangeabilit betwea pressure
and head Hed is usa as ameasue of specifc energy:
(E, ft-Ibf)

(h.f) = (masslbm)

A certan amoun of car in the use of thes equatioms is required becaus Ibf is being canceld by Ibm. The actua cancellatio is:

g, Jom-ft [y 1ot
“Tof-se@ T2
hinft = U M "o

As g, always equas 32.174 the corret¢ numericé value for heal will be returnel as long as the locd gravitationd acceleratia is 32.17% ft/sec.

D-5.3 Reynolds Number. The Reynold numbe is adimensionles ratio of the inertid flow forces to the viscous forces within the fluid:

D Vp DV
R, = = 2
Mg, v
where:

D. = equivalet flow diameter

vV = flow velocity

p = fluid density

p = absolue viscosiy of the fluid

v = kinematt viscosity of the fluid

The Reynold numbe can be calculatel from the unit mas flow rate (G):

DG
R, =
Mg,
where
D. = equivalen flow diameter ft
V = flow velocity, ft/sec
G = mas flow rate per unit area lom/sec-ft
n = absolue viscosiy of the fluid, Ibf-sec/ft
g. = gravitationd constah = 32.174 Ibm-ft/lbf-$ec
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The Reynold numbe is an importart indicata in mary types of problems In addition to being usel quantitativey in mary equationsthe
Reynolds humbe also is usal to determire whethe fluid flow is laminar or turbulent A Reynolds numbe of 2,00 or less indicates laminar
flow. Fluid particlesin lamina flow mowe in straigh patts paralld to the flow direction Viscous effect are dominant resultirg in a parabolic
velocity distribution with a maximum velocity alorg the fluid flow centerline If the Reynolds numbe is greate than 4,00Q flow is turbulent.
Turbulent flow is characterizé by randan movemen of fluid particles For Reynold numbes betwea 2,00 ard 4,00Q the flow regine is
in transition from lamina to turbulen flow.

D-54 Equivalent Diameter. For acircular flow channel the equivalen diamete (D,) in the expressioa for Reynolds numbe is the inside
diameter Equivalen diametes for othe shape channes are given in Table D-6.

Table D-6. Equivalen t Diameters.

Condui t Cross Section D, Conduit Cross Section D,
Flowin g Full Flowin g Partiall y Full

ANNUIUS ..o D,- D, Half-filled circle .........................ooo. D
) 4hL

SQUAN . . ot L Rectangle (h deep, Lwide) .................... I
Rectangle ... 2L,L, Wide, shallow stream (hdeep) ................. 4h
L+ i i hL
Triangle (h deep, L broad, sside) .......... =

Trapezoid (h deep, a wide at top, b wide 2h(a + b)

at bottom, sside) ...................... D+ 25

D-5,5 Hydrauli c Radius. The hydraulic radius (r,) of aflow channéisthe areain flow divided by the wetted perimeter exclusiwe of the free
liquid surface Equivalert diamete can be found from the hydraulic radius:

D = 4r

e h

D-6 STRENGTH OF MATERIALS

Externa forces acting on abody are resistel by reactiors within the body, termal stresses
The maximun stres that can be sustaind by a materid is the measue of its strength and

is determiné by the elastt and cohesie properties of the material. @

a,
D-6.1 Stress Stres is defined as force (F) per unit area (A) ard thus has the sane units ’\é(%gggé
as pressure Conditiors causimg the three fundamenthtypes of stres areillustrated in Figure
D-16. Normd or axia stresse (tensike and compressivieresut from forces actirg at right
angles to the cross section ard are indicated by the symbad o, s, or f. The averag normal
stres createl by a force (F) acting on across sectim of area (A) is:

_ F
g = _
A

(b)
] ] = . . SHEAR
In modg calculations tensike stres taken as positive and compressie stres as negative. STRESS

Shea stresssresut from forces acting paralld to the cros section and are indicatal by the
symbad 1, s, or Q:

A, F F
where T isthe averag shea stres in area A, that is being sheard by force F. Bearirg stress BEA(;)ING A’ A’
isactualy a pressurgasit is the intensiy of force betwe@ abody and its support Bearing STRESS %

stres is indicated by the symbd o, or s,, and like normd and shea stressis defined as a ‘

ratio of force to area.

F = opAp

D-6.2 Strain. Stran (g) is deformatiom expressd as apure numbe or ratio. For amember
in tensia or compressionit is expresseé as the chang in length divided by origind length.
True stran (9) is the logarithm of the ratio of the lengh at the momern of observatio to the
origind length True strain (8) does nat differ much from € until abowe 20 percent Elongatian is accompanié by areductio in cross-sectional
area Poissons ratio () is the ratio of stran measurd at right angles to the applied stres to stran measurd parallé to the applied

stress—essentiglla statemenhof constang of volume during deformation For elastt strain p ranges from 0.283 to 0.22 for mod structural

steels and from 0.33 to 0.334 for mog aluminum alloys For plastc strain W is approximatef 0.5.

Figur e D-16. Stresses.
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D-6.3 Stress-Strain  Relationships.
Stress-strain relationships differ slightly for
tensile and compressive stress. 140,000 \/@
D-6.3.1 Tensile Stress-Strain Diagram. 120,000 |
The commonly used engineering tensilg
stress-strain curve is obtained by statically « 100,000 /' ELASTIC RANGE /' PLASTIC RANGE
loading a standard specimen; that is, by % gﬁ \ o ¥
loading the specimen slowly enough thatall - 80,000 8\ Ju
parts of the specimen remain in statid © j 5 \ YIELD POINT
equilibrium. Figure D-17(a) shows stress :S_é 60,000 ‘é@ T 3 [
strain curves for several metals. & // SN o
40,000 7 l 0 !

Stress-strain curves for most engineering J/ (f) = o Jd=sLoPE=E
materials have an initial lineaelastic ? !

: b 20,000 3
region, as shown in Figure D-17, where '
deformation is reversible and time-
independent. The slope of this portion of] 0 10 20 30 40 50 STRAIN & —
the curve, stress divided by unit elongation STRAIN, PERCENT
is the modulus of elasticity or Young’'s (a) COMPARATIVE STRESS-STRAIN (b) TYPICAL STRESS-STRAIN CURVE FOR STEEL
modulus In the elastic region, strain is ngB@mgfgﬁoéTHﬂADsgh%;gw
proportional to stress, and the material ig @ COLD-ROLLED STEEL:; 5)MEDIUM
said to follow Hooke's Law The CARBON STEEL, ANNEALED 6)MEDIUM-
proportional limit is the point where the CARBON STEEL, HEAT-TREATED.
curve begins to deviate from a straight line
i.e., the point where strain ceases to be 50000 I Tk -k oy )
proportional to stress. Thelastic limitis 40,000 \ /| Yl
the maximum stress that a material will| %= E'S-TAéAT\:ﬁl )( ‘
withstand without permanent oplastic @ 30,000 W
deformation. If the specimen is loaded| PELT 7 \—E%éir,{lc @
further, the curve becomes increasingly less ﬁ 20,000 = o
linear. If a specimen is loaded to point X| £ 5
in Figure D-17(c), and then unloaded, the 10,000
resulting unloading curve XXs linear and 0 X1
essentially parallel to the original elastic 0 01 02 03 04 05 06 07 0.2
curve. The horizontal separation between STRAIN, PERCENT STRAIN, PERCENT ——
the bases of the two curves is thg (c) PROPORTIONAL LIMIT (d) TYPICAL STRESS-STRAIN CURVE
permanent set or plastlc strain FOR MATERIAL WITHOUT WELL-
corresponding to the stress at X. The DEFINED YIELD POINT (ALUMINUM)
elastic limit cannot be determined without
frequently Uf_"(?ad'”g the specimen dqung Figure D-17. Stress-Strain Relationships.
the test, but it is very near the proportional

limit; the proportional limit is customarily
taken as the elastic limit and called theoportional elastic limit(PEL). Shortly after the proportional limit, ferrous metals and certain other
materials exhibit a well-defined, "sharp-knead&ld point—a stress where there is a marked increase in strain without an increase in stress as
shown in Figure D-17(b). The corresponding stress is calledittld stressor yield strength(a,). For materials without well-defined yield
points, and sometimes for those with yield points, an arbitrary yield strength is defined as the stress creating a specified permanent set, o
0.2 percent of original length.

The ultimate tensile strengtfo, or UTS) is the maximum load sustained by the specimen (the highest point on the stress-strain curve) divide
by theoriginal cross-sectional area, and as such, is a conservative measure of the specimen’s strengttiuctiba in areaor necking down

is the contraction in cross section at the fracture, expressed as a percentage of the original afeactufber rupture stress is the failure

load divided by the reduced area.

D-6.3.2 Compressive Stress-Strain Diagram.The compressive stress-strain curve is similar to the tensile curve up to the yield point.

Thereatfter, increasing specimen cross section (rather than decreasing, as in the tensile test) causes the curve to diverge from the tensile ¢
Compressive yieldtrength is defined as the maximum compressive stress that a ductile material can withstand without a predefined amot
of deformation. Ultimate strength is the maximum compressive stress that a material can withstand without fracture. Some ductile material
will not fail in a compression test. If a specimen is first plastically strained in tension, yield stress in compression is reduced and vice vers

D-6.3.3 Relationship Between Strength and Loading. Materials that yield more than 5 percent before fracture are classelicite
Relatively definite relationships exist between the strength of ductile materials in tension and their strength in compression, shear, and bear
Compressive strength is approximately equal to tensile strength. Shear yield strength is normally taken as two-thirds tensile yield, althougl
may be as low as one-half to five-eighths tensile yield. Bearing yield ranges from 0.9 to 1.5 times tensile yield, depending on the applicatic
Materials that yield less than 0.5 percent before fracture are classified as brittle. Brittle materials, such as concrete, cast iron, ceramics, polyrr
etc., are usually much stronger in compression than tension and fail by fracture rather than yield.
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D-6.4 Hardness. Hardness is variously
defined as resistance to local penetratiory, 170
scratching, abrasion, or to yielding. The

resistance to local penetration, or 160
indentation hardnessis used widely as a ng/}
measure of hardness, and indirectly as 150
indicator of other properties, including
strength. Indentation hardness is measurgd
on several scales by specialized equipment.

Lo,
140 Oy
<
Q
<
N

130

Brinell hardness is determined by forcing 120

hardened sphere under known load into th
surface of the material, and measuring th
diameter of the resulting indentation. Th

Brinell hardness number is the load used i
kilograms, divided by the surface area of
the indentation in square millimeters.

& NOTE: TO OBTAIN TENSILE
110 0)"‘ STRENGTH CORRESPONDING H
5

TO A GIVEN ROCKWELL
NUMBER, USE CHART TO

100 FIND EQUIVALENT BRINELL

A
eC?
& NUMBER, THEN READ FROM
UPPER GRAPH 1

80 07‘0 NU\\'JB ERIE=== 110
Rockwellhardness is indicated by the depth | o NERETTY

of penetration of an indenter. The indente ° N \‘E%E‘M 100
is either a steel ball of specified diameter o 60 1297 g\Px : ! 90
a Brale—a spherical-tipped diamond cone |

of 120 degree included angle and 0.2 50
millimeter tip radius. A minor load of 10
kilograms is applied to initiate penetration
and hold the indenter in place. A 60-, 60
100-, or 150-kilogram major load is then
applied and released. Penetration is read 50
from an indicator dial with the minor load JBER [
still on the indenter. Hardness is expressefl L O 1
as a number equal to a constant less th | S B%% coNE)
number of gage units of penetration; harde | \ }@"AD\P‘
materials will have higher hardness d(&fégo O 20
numbers. The dial on Rockwell hardnesy }9%6‘(\6
indicators is arranged to read hardnesp P ® 10
directly. A variety of combinations of
indenter and major load are possible; the 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
most commonly used ar@ockwell B(Ry) BRINELL HARDNESS NUMBER (3,000 KG LOAD, 10 MM BALL)

with a ¥1e-inch steel ball indenter and 100-
kilogram major load, andRockwell C(R.)
with a Brale indenter and 150-kilogram
major load.

90

TENSILE STRENGTH, 1,000 LB PER SQ. IN.

%
[
®

@)
O A0
| Loy 80

40 70

40

D

30

ROCKWELL "B" AND "C" NUMBERS

\ <)

Figure D-18. Steel Tensile Strength vs Hardness.

There is a more or less definite relationship between hardness and tensile strength for any material. Once the relationship has been determined
experimentally, the strength of a sample of the material can be estimated by the relatively simple Brinell or Rockwell tests. Figure D-18 shows
the relationship between tensile strength and hardness for steel; ultimate tensile strength is approximately 500 times the Brinnel hardness number.

D-6.5 Additional Definitions. The following terms are frequently encountered in discussions of material strength and structural applications:

Carbon steel Carbon steel owes its properties chiefly to the presence of carbon, without substantial amounts of other alloying elements. It is
also termedrdinary steel straight carbon steelandplain carbon steel

Case hardening A process of hardening a ferrous allow so that the surface layegsaris made substantially harder than the interiocore
Typical case-hardening processes@burizingandquenching, cyaniding, carbonitriding, nitriding, induction hardeniagdflame hardening

Charpy Test. A pendulum type of impact test in which a specimen, supported at both ends as a simple beam, is broken by the impact of the
falling pendulum. The energy absorbed in breaking the specimen, as determined by the decreased rise of the pendulum, is a measure of the
impact strength, otoughnessof the metal.

Cold work. Plastic deformation at such temperatures and rates that substantial increases occur in the strength and hardness of the metal. Visible
structural changes include changes in grain shape and, in some instances, mechanical twinning or banding.
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Cooling stresses Stresses developed by uneven contraction or external constraint of metal during cooling; also those stresses resulting fre
localized plastic deformation during cooling.

Corrosion fatigue. The repeated cyclic stressing of a metal in a corrosive medium, resulting in more rapid deterioration of properties than woul
be encountered as a result of either cyclic stressing or of corrosion alone.

Creep. The flow or plastic deformation of metals held for long periods of time at stresses lower than the normal yield strength. The effec
is particularly important if the temperature of stressing is in the vicinity of the recrystallization temperature of the metal.

Creep limit. The maximum stress that will result in creep at a rate lower than an assigned rate.

Endurance limit. The maximum stress that a metal will withstand without failure during a specified large number of cycles of stress. If the
term is employed without qualification, the cycles of stress are usually such as to produce complete reversal of flexural stress.

Endurance ratio. The ratio of the endurance limit for cycles of reversed flexural stress to the tensile strength.
Fatigue. The tendency for a metal to break under conditions of repeated cyclic stressing considerably below the ultimate tensile strength.

Fatigue crack or failure. A fracture starting from a nucleus where there is an abnormal concentration of cyclic stress and propagating throug
the metal. The surface is smooth and frequently shows concentric (sea shell) markings with a nucleus as a center.

Flow stress The shear stress required to cause plastic deformation of metals.

Hot working. Plastic deformation of metal at such a temperature and rate that strain hardening does not occur. The lower temperature lir
for this process is the recrystallization temperature.

Impact Test. A test to determine the energy absorbed in fracturing a test bar at high velocity. The test may be in tension or in bending. .
notchtest is made with a notched sample, to test resistance to multiaxial stresses and stress concentration effects.

Malleability . The ease with which a metal deforms when subjected to rolling or hammering.

Modulus of Rigidity. In a torsion test, the ratio of the unit shear stress to angular displacement per unit length in the elastic range. Modult
of rigidity corresponds to the modulus of elasticity in the tension test.

Modulus of Rupture. The ultimate strength of the breaking load per unit area of a specimen tested in torsion or in bending (flexure). Ir
tension, modulus of rupture is the tensile strength.

Notch brittleness Susceptibility of a material to brittleness in areas containing a groove, scratch, sharp fillet, or notch.
Notch fatigue factor. The reduction caused in fatigue strength by the presence of a sharp notch in the stressed test section.

Notch sensitivity. The reduction in nominal strength caused by the presence of a stress concentration, usually expressed as the ratio of
notched to the unnotched strength.

Operating stress The stress to which a structural unit is subjected during service.
Plasticity. The ability of a metal to be deformed extensively without rupture.

Proof load. The test load applied to anchors, chains, or other parts, fittings, or structure to demonstrate proper design and construction ¢
satisfactory material.

Proof strength. The strength of a material, part, or structure as established by a proof test.
Proof stress In a test, stress that will cause a specified permanent deformation in a material, usually 0.01 percent or less.

Residual stress. Stresses set up within a metal by nonuniform plastic deformation. This deformation may be caused by cold working or b
drastic gradients of temperature from quenching or welding.

Resilience The tendency of a material to return to its original shape after the removal of a stress that has produced elastic strain.
Shear Modulus. Modulus of rigidity.
Strain hardening. An increase in hardness and strength caused by plastic deformation at temperatures lower than the recrystallization ran

Tangent modulus The slope of the stress-strain curve of a metal at any point along the curve in the plastic region. In the elastic region, th
tangent modulus is equivalent ¥oung’s modulus

Thermal stresses Stresses in metal, resulting from nonuniform distribution of temperature.

Toughness The ability of a material to absorb energy before fracture; usually represented by the area under a stress-strain curve, and there
a function of both ductility and strength.

Welding stress The stress resulting from localized heating and cooling of metal during welding.

Work hardness. Hardness developed in metal as a result of cold working.
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D-6.6 Failure Modes and Safety Factors.If a structural member or part is to carry applied loads safely, a maximum permissible stress must

be determined. Thisllowable stressalso calledworking stress, design stress, safe stress, &aised to establish minimum component
dimensions or maximum component loads. Allowable stress is found by dividing the applicable material property—yield strength, ultimate
strength, fatigue strength—by an appropriate factor of safety. The factor of safety should be chosen only after all other factors contributing to
or detracting from the reliability of the member have been quantified as thoroughly as possible. These factors include assumptions implicit in
the structural analysis and uncertainties as to the magnitude and kind of operating loads, reliability of the materials used, operating environment,
level of quality control that can be implemented during fabrication and installation, and level of knowledge about possible failure modes. An
additional important consideration is the potential damage should the component or system fail, particularly when there is danger to human life.

In general, the ductility of the material and type of loading specify the failure mode and the property to which the factor of safety should be
applied to determine allowable stress. There are three general cases:

® Brittle materials,
® Ductile materials in static loading, and

® Ductile materials in cyclic loading.

D-6.6.1 Brittle Materials. For brittle materials in uniaxial stress, the factor of safety (F§
is applied to ultimate strengtlo() to determine allowable stress:

o

- u

Oaliow = F_S

~

For brittle materials in biaxial stress, timeaximum normal stress theopyedicts failure of
brittle materials under static loading if the compressive principal stress is greater than the
ultimate compressive strength, or the tensile principle stress is greater than the ultimate
tensile strength. The principle stresseasg,o,, are determined as described in Paragraph 2-
8.2. By plotting compressive stresses as negative and tensile stresses as positha, on|
coordinates, aafe stress combination envelogen be defined as a rectangle bounded by the g e 519, Safe Stress Combinations for
ultimate compressive and tensile principle stresses, as shown in Figure D-19. An allowjable Brittle Materials (Maximum
stress envelope is created by applying a safety factor to the ultimate compressive and tensile Normal Stress Theory).
stresses to define a smaller rectangle.

Experimental evidence shows that failures occur in the second and fourth quadrants, [even
though the stresses are less than the ultimate strengthsCdtiemb-Mohr theorynodifies Sut
the failure line in the second and fourth quadrants, shown in Figure D-20, along with typjcal
failure data. Sue
*Su
D-6.6.2 Ductile Materials in Static Loading. Plastic deformation is unacceptable for most Cooe
applications, so yield is considered failure. Allowable stresses for ductile materialg in .;.:_'FAILURES
uniaxial stress are found by applying the factor of safety (FS) to ultimate tensile strength S :
(0y):
_ 0, Figure D-20. Safe Stress Combinations for
Oiow — == Brittle Materials (Coulomb-Mohr
FS Theory).

Compressive and tensile yield strengths are equal for ductile materials.

For ductile materials in biaxial stress or pure shearmiaaimum shear stress thegoyedicts that yield will begin when maximum shear stress
equals the shear yield strength. Shear yield strengjhig 60 to 65 percent of tensile yield strength for ductile materials, but is assumed to
be one-half tensile yield strength by the theory. Maximum shear stress is equal to:
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The basic criteria is to keep maximum shear stress below one-half the tensile yield strefigin,

producing the safe stress envelope shown in Figure D-21. The shape of the envelope is 92
similar to that of the Coulomb-Mohr theory for brittle materials, but is based on yigld Syt
strength rather than ultimate strength. The envelope is symmetrical because tensile and
compressive yield strength are assumed equal for ductile materials. The factor of safety is
defined as: -Sye o
1
FS - rallow - oy Syt
Tmax max
Allowable shear stress is then: /s
yc
T =
allow 2ES
Figure D-21. Safe Stress Combinations for
is i i i i Ductile Materials (Maximum
Th(_e factor of safety is incorporated into the allowable stress diagram by settirmy ted Shear Stress Theory).
0, intercepts equal t@q,,-

subject to cyclic loading at stresses below the yield limit. The fatigue strength is the
maximum completely reversing stress a material can withstand without failing. A logarithmic
plot of fatigue strength against the number of load cycles (S-N curve, shown in Figure D122) ~ut
shows a linear relationship in the region between 1,000 and 1,000,000 cycles. For fewer|thans,
1,000 cycles, fatigue strength is equal to ultimate strength; after 1,000,000 cycles there |s no
further strength reduction and the curve is flat. The maximum stress for an infinite lifg is

the endurance strength {5 Endurance strengths for steel and cast iron are: 10 102 10° 10% 105 106 107

D-6.6.3 Ductile Materials in Cyclic Loading. Fatigue failure is failure of a componentrk1

Steel s. = 0.5 (s, < 200,000 psi)
Figure D-22. Typical S-N Curve for Steel.

100,000 psi ¢, > 200,000 psi)
0.4s,

Castiron s,
where:
§, = ultimate strength for the type stress (i.e., tensile, compressive, shear)

Fatigue strength of aluminum never levels off, but continues to decrease as the number of cycles increase. Endurance strength for alumil
is taken as the fatigue strength at 100,000,000 cycles and is approximately:

0.3,
0.4,

An S-Ncurve can be used to establish limiting loads for an anticipated number of cycles, or to predict the approximate number of cycles
failure for known stress levels.

Cast S
Wrought S

Fluctuating stresses are created in a material when:
* Aload is intermittently applied and released in one direction only.

®* A component is subject to both a static load and a cyclic (reversing) load that is not great enough to cancel the static load al
reverse the stresses in the component.

® An applied load varies between upper and lower limits, but does not reverse.

The mean stress is:

s = Smax_*-smin Oalt
mean 2 Se
The alternating stress is half the stress range: Se S "Q%
Smax - Smin RS- A\é\S) é\<//V
S, = — §
alt 2 6\8

S
SAFE Y
/V@ Gmean

Failure stress of a material under fluctuating stress is a function of both yield strength|and

endurance strength. The two criteria are related by plo&tjpgn a vertical scale, angl,q,, Syt
on a horizontal scale, as shown in Figure D-23. A failure liBederberg lingis drawn FS.
from the endurance strengtls,( on the vertical scale, and yield strengt!sq/)(on the , ,
horizontal. The enclosed triangle defines acceptable combinations of alternating and &lgpyre D-23. %ﬁ&%ﬁﬁglgg EEISS?LEP V?_Ii?wge
stress. Factors of safety can be appliedtands, to define a safe stress line, as shown.rln y 9 )
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